循环赛日程安排分治法分析

问题描述:

  • 设有n(n = 2^k)位选手参加网球循环赛,循环赛共进行n-1天,每位选手要与其他n-1位选手比赛一场,且每位选手每天必须比赛一场,不能轮空。试按此要求为比赛安排日程。

编程思想:

假设n位选手被顺序编号为1,2,3,…,n,比赛的日程表是一个n行n-1列的表格,i行j列的表格内容是第i号选手在第j天的比赛对手。根据分而治之的原则,可从其中一半选手(2^(n-1位)的比赛日程,导出全体n位选手的日程,最终细分到只有两位选手的比赛日程出发。可假设只有8位选手参赛,若1至4号选手之间的比赛日程填在日程表的左上角(4行3列),5至8号选手之间的比赛日程填在日程表的左下角(4行3列);那么左下角的内容可由左上角的对应项加上数字4得到。至此,剩余的右上角(4行4列)是为编号小的1至4号选手与编号大的5至8号选手之间的比赛日程安排。例如,在第4天,让1至4号选手分别与5至8号选手比赛,以后各天,依次由前一天的日程安排,让5至8号选手“循环轮转”即可。最后,比赛日程表的右下角的比赛日程表可由,右上角的对应项减去数字4得到。

具体实现:

[php]
/**
* @brief 循环赛日程安排,分治法
*
* @param[in] A 数组指针
* @param[in] k 选手数幂,如2^k位选手
*/
void GameTable(int** A, int k)
{
int n = 2;
A[0][0] = 1;
A[0][1] = 2;
A[1][0] = 2;
A[1][1] = 1;

for (int t = 1; t < k; ++t)
{
int temp = n;
n *= 2;

int i = 0, j = 0;
//左下角
for (i = temp; i < n; ++i)
{
for (j = 0; j < temp; ++j)
{
A[i][j] = A[i – temp][j] + temp;
}
}

//右上角
for (i = 0; i < temp; ++i)
{
for (j = temp; j < n; ++j)
{
A[i][j] = A[i + temp][j – temp];
}
}

//右下角
for (i = temp; i < n; ++i)
{
for (j = temp; j < n; ++j)
{
A[i][j] = A[i – temp][j – temp];
}
}
}
}
int main()
{
float k = 3.0f;
int personCount = pow(2.0f, k);
int** A = new int*[personCount];
for (int t = 0; t < personCount; ++t)
{
A[t] = new int[personCount];
}
GameTable(A, k);

for (int i = 0; i < personCount; ++i)
{
for (int j = 0; j < personCount; ++j)
{
cout << A[i][j] << " ";
}
cout << endl;
}
}
[/php]

执行结果图:

Comments are closed.